
1. Introduction
The impact of climate and climate change on human health is increasingly recognized as one of the most 
pressing societal challenges. Many avenues for health-related climate impacts have been emphasized, in-
cluding heat stress, extreme weather, air quality, freshwater availability, allergens, human conflict, vec-
tor-borne disease, and more (e.g., Watts et al., 2019). While many of the impacts of climate change on health 

Abstract Malaria is among the greatest public health threats in Mozambique, with over 10 million 
cases reported annually since 2018. Although the relationship between seasonal trends in environmental 
parameters and malaria cases is well established, the role of climate in deviations from the annual cycle 
is less clear. To investigate this and the potential for leveraging inter-annual climate variability to predict 
malaria outbreaks, weekly district-level malaria incidence spanning 2010–2017 were processed for a 
cross-analysis with climate data. An empirical orthogonal function analysis of district-level malaria 
incidence revealed two dominant spatiotemporal modes that collectively account for 81% of the inter-
annual variability of malaria: a mode dominated by variance over the southern half of Mozambique 
(64%), and another dominated by variance in the northern third of the country (17%). These modes 
of malaria variability are shown to be closely related to precipitation. Linear regression of global sea 
surface temperatures onto local precipitation indices over these variance maxima links the leading 
mode of inter-annual malarial variability to the El Niño-Southern Oscillation, such that La Niña leads 
to wetter conditions over southern Mozambique and, therefore, higher malaria prevalence. Similar 
analysis of spatiotemporal patterns of precipitation over a longer time period (1979–2019) indicate that 
the Subtropical Indian Ocean Dipole is both a strong predictor of regional precipitation and the climatic 
mechanism underlying the second mode of malarial variability. These results suggest that skillful malaria 
early warning systems may be developed that leverage quasi-predictable modes of inter-annual climate 
variability in the tropical oceans.

Plain Language Summary Malaria is one of the main public health concerns in 
Mozambique, with millions of reported cases in the country each year. While malaria has been tied to 
monthly swings in rainfall and temperature, its relationship to year-to-year changes of the climate is 
less well known. We identified regions where local malaria cases varied together and found two main 
patterns: a main hotspot over the southern half of Mozambique, and a second hotspot over the northern 
third of the country. Rainfall drives both of these hotspots. We then tied these patterns to two natural 
climate phenomena, the El Niño-Southern Oscillation and the Subtropical Indian Ocean Dipole, both of 
which impact the climate of the region and help drive malaria prevalence. Our results suggest that it may 
be possible to take advantage of the predictability of these climate phenomena to improve public health 
planning both in Mozambique and more broadly.
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will be detrimental, these connections also present us with a public health opportunity. Increasing our 
understanding of the influences of interannual climate variability on infectious and vector-borne diseases 
can facilitate planning and resource allocation. One of the primary concerns among vector-borne diseases, 
and the focus of this study, is malaria.

1.1. Public Health Context

Malaria is the fourth leading cause of death among all infectious or parasitic diseases with ∼450,000 deaths 
globally in 2016 (Centers for Disease Control and Prevention, 2018a; World Health Organization, 2018a). It is 
also directly linked to climate, primarily through precipitation (K. R. Smith et al., 2017b; Watts et al., 2019). 
As malaria is a vector-borne disease reliant on Anopheles mosquitoes for transmission, it is subject to the 
details of the Anopheles life cycle and is, thus, critically dependent on the existence of standing water. Adult 
Anopheles mosquitoes lay eggs in standing water which must neither dry out nor be flushed by excessive 
rainfall while larvae develop over a period of around 1–2 weeks (Centers for Disease Control and Preven-
tion, 2018b). This results in malaria exhibiting a crucial dependence on the mean climate and its variability. 
The malaria transmission cycle is also influenced by temperature, which affects the speed at which both 
Anopheles mosquitoes and malaria parasites mature.

Malaria is endemic to Mozambique, a nation of over 30 million people on the southeastern coast of the 
African continent. There were 8.9 million reported cases of malaria in Mozambique in 2017, with annual 
reported deaths in the country due to malaria numbering in the low thousands (World Health Organiza-
tion, 2018b). Consequently, Mozambique is one of six countries that collectively account for over half of 
all malaria cases globally (World Health Organization, 2020), as well as a focus country within the U.S. 
President's Malaria Initiative (Centers for Disease Control and Prevention, 2018c). In total, malaria led to 
1.2 million disability adjusted life years lost in Mozambique in 2016, contributing 7% of all disability-adjust-
ed life years lost that year in the country (World Health Organization, 2018a). These impacts are observed 
unevenly around the country due to spatial variability in both malaria incidence and population (Figure 1).
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Figure 1. Distribution of Population and Malaria in Mozambique as of 2017. (a) Population for each district (blue fill). (b) Mean weekly cases of malaria for 
each district (yellow-red fill). (c) Same as (b) but for mean weekly incidence of malaria (cases per 1,000 individuals) for each district (yellow-red fill). Null 
values are due to recent redistricting within Mozambique.
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Malaria transmission in Mozambique is highly seasonal with the peak in reported cases occurring several 
weeks after the onset of monsoonal rainfall during austral summer, as illustrated for two representative 
districts in Figure 2. Though the elapsed time between the onset of precipitation and the annual peak of the 
malaria outbreak varies with each district and year, a typical lag is roughly 6–10 weeks. Therefore, while 
seasonal precipitation in Mozambique peaks from November-April, the peak in malaria prevalence typical-
ly occurs around January-March.

There is potential human and economic value in increasing our understanding of how malaria incidence 
is affected by weather and climate (Thomson et al., 2018). For example, developing an effective and skillful 
malaria early warning system with sufficient lead time for public health applications could maximize pre-
paredness and the efficient use of limited resources. Because of this, many efforts have aimed to develop a 
malaria early warning system that could inform public health responses for highly impacted countries (e.g., 
Girond et al., 2017; Merkord, 2017; Thomson et al., 2006; World Health Organization, 2001). While these 
attempts often utilize observed and forecasted weather and climate information, the usefulness of these 
inputs has yielded mixed results (Thomson et al., 2018). Conventional attempts to develop a malaria early 
warning system incorporating meteorological factors often aim to produce statistical models by focusing on 
short-term lead-times (i.e., weeks to 2 months of advance notice) between observed precipitation and tem-
perature and their interactions with observed malaria incidence (e.g., Kim et al., 2019; Midekisa et al., 2012; 
Teklehaimanot et al., 2004; Xiang et al., 2018). Mabaso et al. (2012) critically reviewed 35 publications and 
noted that nearly all examined studies agreed that meteorological conditions were a crucial factor in ma-
laria epidemics, with an overarching focus on precipitation. Of these, only six studies investigated potential 
linkages between the El Niño-Southern Oscillation (ENSO) and malaria epidemics in Africa, and those 
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Figure 2. Malaria and precipitation in the Mozambique districts of Cuamba and Inharrime. (a) Three-month running 
means of malaria incidence (cases per 1,000 individuals) (red) and precipitation in mm/month (blue) for the district of 
Cuamba, Province of Niassa. (b) Same as (a) but for the district of Inharrime, Province of Inhambane.
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studies yielded mixed results. However, recent efforts have increasingly shifted to examining the interac-
tions between ENSO, along with other modes of interannual climate variability, and their influences on 
rates of malaria (e.g., Behera et al., 2018; Bouma & van der Kaay, 1996; Diouf et al., 2020; Ikeda et al., 2017; 
Kreppel et al., 2019; Landman et al., 2020; J. Smith et al., 2017a). In particular, the major tropical ocean 
basin on the eastern side of Africa, the Indian Ocean, holds considerable potential for predictability at the 
interannual time scale (e.g., Behera & Yamagata, 2001; Webster et al., 1999). This widening focus on estab-
lishing ties between interannual climate variability and malaria, with the potential for enhanced predicta-
bility and public health benefits, is the context for the present paper.

Mozambique is currently in the process of implementing a near-term early warning system to provide dis-
trict-level predictions of malaria outbreaks. This system will utilize meteorological variables like tempera-
ture and precipitation, along with the spatiotemporal relationship between weekly aggregated district-level 
cases of malaria (Colborn et al., 2018), to provide predictions of outbreaks with a lead time of ∼4 weeks. 
Although this lead time is expected to be sufficient to mobilize existing resources for outbreak mitigation 
and response within an affected area, it is not sufficient to alter long-term planning of operations such as 
indoor residual spraying or distribution of long-lasting insecticide-treated nets that are planned several 
months in advance in response to predicted transmission conditions. Given this, the government has ex-
pressed the need for a longer-term forecasting system that takes advantage of the potential predictability of 
interannual climate variability.

1.2. Meteorological and Climatic Context

Spanning 10°–27°S latitude, the country of Mozambique lies in both tropical and subtropical zones and thus 
possesses a transitional climate regime. The primary manifestation of the tropical-subtropical transition 
is a sharp north-south rainfall gradient, particularly in austral summer (Figure S1). The primary driver of 
precipitation in the northern part of the country is the annual penetration of the Intertropical Convergence 
Zone, reaching its southernmost extent around 15°S. The Intertropical Convergence Zone drives tropical 
precipitation rates (up to 800 mm per summer) for the northern part of Mozambique. South of the annu-
al reaches of the Intertropical Convergence Zone, rainfall is less frequent and scarcer (200–300 mm per 
summer), and the climate is subtropical in characterization. In addition to mean state differences, there 
also exist discrepancies in the interannual variability in precipitation (Figure 2). To illustrate, the district 
of Cuamba lies in the northern part of the country (36.5°E, 14.7°S) and experiences more consistent pre-
cipitation during austral summer with minimal precipitation outside of the monsoon season. In contrast, 
Inharrime is in the southern part of the country (34.7°E, 24.4°S) and experiences both dramatic interannual 
variability in austral summer precipitation, as well as greater precipitation totals outside of the rainy season 
compared to Cuamba.

The ENSO is the dominant mode of climate variability in the tropics, with impacts felt around the globe 
(Rasmusson & Carpenter,  1983). The remote impacts of ENSO events begin as local changes to the at-
mospheric circulation and precipitation patterns over the equatorial Pacific Ocean, which then manifest 
in teleconnections around the globe, including into higher latitudes. Anomalously warm or cool sea sur-
face temperatures (SSTs) over the eastern equatorial Pacific produce a cascading atmospheric response that 
propagates globally as both atmospheric Kelvin and Rossby waves (Gill, 1980; Hoskins & Karoly, 1981). Ex-
aminations of ENSO teleconnections indicate that El Niño (La Niña) is likely to reduce (increase) precipita-
tion over southern Africa due to shifting atmospheric circulation patterns over the region (Cane et al., 1994; 
Hoell & Cheng, 2018).

In addition to ENSO, there are a number of modes of climate variability that impact southern Africa. One 
of these modes of climate variability is the Indian Ocean Dipole (IOD), an oscillation of warmer and cooler 
SSTs over the equatorial Indian Ocean (Saji et al., 1999; Webster et al., 1999). The positive (negative) phase 
of the IOD has anomalously warm (cool) SSTs and increased (decreased) precipitation over the western In-
dian Ocean and surrounding region. While perhaps not as dominant of a driver of global climate anomalies 
as ENSO, the IOD does have strong influences on the climate over the surrounding region, including west-
ern Africa, India, Southeast Asia, and Australia (e.g., Ashok et al., 2001, 2003; Saji & Yamagata, 2003). Dis-
tinct from the IOD is the Subtropical Indian Ocean Dipole (SIOD). First identified by Behera and Yamaga-
ta (2001), the SIOD consists of a pattern of oscillating SSTs between poles southeast of Madagascar and 
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west of Australia (Figure 3). This oscillation induces regional impacts on precipitation, namely to southern 
Africa, where a positive SIOD—that is, warm SST anomalies to the southwest of Madagascar—leads to 
increased precipitation over southern Africa (Hoell et al., 2018; Reason, 2001). Benguela Niños occur when 
anomalously warm waters persist off the western coasts of Namibia and Angola, near the confluence area of 
the Angola Current and the Benguela upwelling system (Florenchie et al., 2003; Reason et al., 2006; Shan-
non et al., 1986). Further afield, Benguela Niños also can lead to altered precipitation patterns across south-
ern Africa (Hansingo & Reason, 2009; Reason & Smart, 2015; Rouault et al., 2003). Finally, the Southern 
Annular Mode, also known as the Antarctic Oscillation, describes the zonal position of a band of westerly 
winds encircling the Antarctic continent (Gong & Wang, 1999; Marshall, 2003), and can similarly influence 
precipitation in southern Africa, among other locations (Gillett et al., 2006; Hendon et al., 2007). Though 
not examined here, there is some evidence of a multidecadal pattern in southern African rainfall as well 
(Morioka et al., 2015; Reason & Rouault, 2005). The modes of climate variability mentioned above represent 
likely candidates to bridge climate and malaria in Mozambique, but it should be noted that our methodol-
ogy does not assume a priori that one or more modes are responsible for this linkage; they are confirmed 
independently and objectively through an analysis process that begins with malaria itself.

2. Data and Methodology
2.1. Malaria Data

Weekly counts of laboratory-confirmed malaria cases at health facilities from 2010 to 2017, reported through 
the Boletín Epidemiológico Semanal, were secured through the National Malaria Control Program of Mo-
zambique. The high temporal resolution data set is reported in epidemiological weeks, a standardized meth-
od of grouping data by continuously counted weeks. Aggregated health facility data are reported for each of 
148 individual administrative districts in Mozambique, producing a relatively fine-scale spatial resolution 
compared to most global climate observations.

Epidemiological week level data provided for each district includes the date, district and province codes, 
total confirmed cases of malaria, confirmed cases of malaria for those under and over 5 years of age, and 
total district population. Analysis for endemic diseases often focuses on cases for children under 5 years of 
age (e.g., Colborn et al., 2018) as it can provide a better representation of disease prevalence than total cases 
since many previously infected adults do not need or seek treatment for subsequent infections later in life. 
In addition, children under 5 years of age are among the most vulnerable subpopulations, accounting for 
around two-thirds of all deaths from malaria (World Health Organization, 2020). Since our methodology 
required the use of malaria incidence (cases per population within each district), and age demographics for 
specific districts were incomplete (i.e., number of individuals under age 5), it was necessary to utilize the 
total number of cases across all age groups. However, a comparison of total cases versus cases in children 
under five revealed a correlation of 0.93 and it is unlikely that this necessary modification altered any results 
or conclusions.
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Figure 3. Climate Index Definitions. Map of December, January, and February SST anomalies during the 2015–2016 
El Niño event (blue-red fill). Boxes illustrate domains of spatial averaging involved in calculating indices for the various 
modes of climate variability described in the main text and Table S1. SST, sea surface temperatures.
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2.2. Climate Data

Time-varying climate fields were derived from a number of sources. Precipitation data were gathered from 
both the Climate Hazards Group Infrared Precipitation with Station (CHIRPS; Funk et al., 2014) and NOAA's 
Global Precipitation Climatology Project (GPCP; Adler et al., 2003). The CHIRPS data set is designed to pro-
vide relatively high spatial resolution (0.05° or ∼5 km) precipitation observations with near-global spatial 
coverage (50°N-50°S) at several temporal scales from 1981 to present. Originally developed to support work 
for the Famine Early Warning Systems Network, CHIRPS combines remote sensing rainfall estimates from 
the Tropical Rainfall Measuring Mission with multiple sources of station gauge data to create a gridded 
precipitation time series (Funk et al., 2015). We coarsened daily CHIRPS data both spatially and tempo-
rally to produce a 0.5° (∼50 km) monthly data set over the domain of interest. Precipitation data were also 
taken from the fully global GPCP version 2.3 data set. Similar to the construction of the CHIRPS data set, 
the GPCP data set blends precipitation estimates from remotely sensed microwave and infrared data with 
surface rain gauge observations to produce a monthly data set at 2.5° (∼250 km) resolution from 1979 to 
present (Adler et al., 2003). In addition to providing global spatial coverage, GPCP data also provide a vali-
dation check for the CHIRPS observation data. SST data were pulled from the NOAA Optimum Interpolat-
ed version 2 (OIv2) product. OIv2 is a relatively high resolution (0.25°) daily product created by blending 
buoy and ship observations with two sources of satellite SST data (Reynolds et al., 2002, 2007).

For a more comprehensive description of global and regional climate variability, we also used output from 
a state-of-the-art gridded reanalysis product—the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis 5 (ERA5). Reanalyses incorporate historical meteorological observations from an ar-
ray of sources, including data from geostationary satellites, surface measurements, buoys, radiosondes, and 
aircraft data (see Tables 14–16 of ERA5 documentation for full list of assimilated data sources; Hennermann 
& Berrisford, 2017). These observations are used to confine a time-evolving global weather model to pro-
duce a gridded data set of a wide variety of meteorological variables with the aim of overcoming conven-
tional issues with the spatial distribution of observations and shortcomings of unconstrained models (Dee 
et al., 2011). ERA5 is the latest reanalysis produced by ECMWF and is the successor to the widely used 
ERA-Interim reanalysis product (Hersbach et al., 2019). Climate variables used from ERA5 span the globe 
from 1979 to present at a spatial resolution of 0.25°; our analysis extends through 2019. The atmospheric 
variables from ERA5 included in our analysis are 300 hPa geopotential height; 500 hPa geopotential height, 
vertical velocity; 700 hPa geopotential height; 850 hPa geopotential height, specific humidity, wind vectors; 
10 m wind vectors; 2 m temperature, dew point; surface mean sea level pressure, precipitation; and vertical-
ly integrated moisture flux divergence (Copernicus Climate Change Service, 2017).

2.3. Data Processing and Methodology

Malaria incidence in Mozambique exhibits a distinct seasonal cycle (Figure 2). Unlike the relatively smooth 
annual cycle exhibited by many climate variables (e.g., temperature), the asymmetric seasonal cycle (i.e., 
abrupt onset of high-malaria season and more gradual decline) of malaria within districts is problematic for 
the application of conventional climate data analysis techniques. For example, the initial onset of malaria 
can vary dramatically across years, rendering a simple, average climatological cycle ill-suited and something 
as simple as a slightly later-than-average onset may appear as a pronounced anomaly. In addition, the dis-
trict-level baseline of malaria varies annually, though it typically stays above zero cases given its endemicity 
in Mozambique.

For a robust description of the spatiotemporal variability of malaria within Mozambique, we applied an 
empirical orthogonal function (EOF) analysis (a.k.a. Principal Component Analysis) to the full complement 
of Mozambique malaria data. Before implementing the EOF analysis, we employed several quality control 
and data preprocessing steps. First, we accounted for missing data by (1) removing six recently created dis-
tricts from our analysis that possessed an insufficient length of reported data, and (2) linearly interpolating 
over 42 missing data points. The second step, which was necessary to execute the EOF analysis, accounted 
for less than a tenth of a percent of the remaining data. After accounting for missing data, we divided the 
total malaria case number in a given week by the population of each district. This allowed us to overcome 
analysis difficulties caused by the high variability of district case numbers that may merely reflect the high-
er population of the district. For illustration, note the differences evident in Figure 1 between mean weekly 
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cases of malaria and mean weekly incidence of malaria. To isolate the interannual variability in malaria 
rates and account for the inconsistent seasonality of the malaria time series, we then applied an annual 
(53-week period) low-pass filter to data for each district. Finally, we removed the mean and detrended the 
malaria incidence time series by removing a third-order polynomial. This final step accounts for variability 
occurring at time scales beyond interannual variability, such as known changes in testing frequency. An 
EOF analysis was then applied to these clean, quality-controlled, district-level time series of malaria. A 
second EOF analysis of precipitation was also performed on the coarsened CHIRPS data set, though the 
amount of preprocessing required was less extensive. In addition to applying a 53-week low-pass filter, the 
precipitation data was also subset spatially and temporally for austral summer in Mozambique. Limiting the 
analysis of precipitation to austral summer facilitates specific examination of the time period of precipita-
tion driving the annual cycle of malaria.

There are a number of ways to describe the implementation and results of an EOF analysis or PCA depend-
ing in part on the academic field. We note for clarity that we will be adopting the terminology described by 
Björnsson and Venegas (1997). Accordingly, the spatial patterns of variance will be referred to as EOFs and 
their corresponding time series of weighting will be referred to as PCs (principal components). The EOF 
(PC) which explains the most and variance will be referred to as EOF1 (PC1), etc. Finally, we append an 
M- or P- prefix to specify discussion of the results of malaria or precipitation EOF analyses, respectively.

3. Results
3.1. Primary Spatio-temporal Patterns of Malaria and Precipitation in Mozambique

The two leading EOF modes of malaria incidence (M-EOF1, M-EOF2) explain 64% and 17% of the inter-
annual variability, respectively. M-EOF1 reveals a roughly north-south split at ∼17°S with a prominent 
center of action in the southern part of Mozambique and a weaker center of action in the north (Figure 4). 
M-EOF2 describes a pattern with an action center north of 15°N and a weak center of action or neutral 
response in the south. It should be noted that the region of these cut-offs (17°S and 15°S, respectively) 
roughly correspond to the southerly extent of the Intertropical Convergence Zone complex. Collectively, 
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Figure 4. Dominant modes of spatio-temporal variability in interannual malaria incidence. (a) Primary mode of 
spatiotemporal variability (M-EOF1) where each dot represents the loading for a district. This mode explains 63.5% 
of the spatiotemporal variance of interannual malaria incidence. Borders of precipitation index are outlined in blue. 
(b) Same as (a) but for M-EOF2. This mode explains 17.1% of the spatiotemporal variance of interannual malaria 
incidence. EOF, empirical orthogonal function.

(a) (b)
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the spatiotemporal patterns revealed by the EOF analysis show that the leading mode of interannual varia-
bility in malaria incidence in Mozambique is a concentrated fluctuation between high and low rates in the 
southern half, with weaker, out-of-phase, variability in the north. The results of the same EOF analysis with 
malaria incidence for individuals under age five produced nearly identical patterns (Figure S2).

Both principal components were compared against indices describing the state of the aforementioned 
modes of climate variability: El Niño-Southern Oscillation, IOD, SIOD, Benguela Niño, and the Southern 
Annular Mode. These climate indices were calculated directly from global SST observations using standard 
definitions (Figure 3 and Table S1). While M-PC1 did not demonstrate obvious statistical relationships with 
any of the climate indices over the relatively limited time span of the malaria observations, M-PC2 was 
strongly anticorrelated with the IOD (r = −0.80), though we demonstrate this relationship to be spurious 
in Section 3.3.

To further investigate how the M-EOF1 physically relates to global, interannual climate variability, a new 
precipitation index was constructed by averaging rainfall over central Mozambique (from 32°E–36°E to 
18°S–22°S; see Figure 4a). The resulting projection of the precipitation field onto the precipitation index is 
highly correlated with both the spatial loading pattern of M-EOF1 and M-PC1(Figures 5a and 5b). Estab-
lishing a precipitation index as a proxy for M-EOF1 allows for an investigation of conditions that lead to 
M-EOF1, but over a greater time span; while available malaria data only spans from 2010 to 2017, multiple 
high-quality precipitation data sets span from ∼1980 to present. This lengthened time span facilitates a 
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Figure 5. Analysis of a Central Mozambique Precipitation Index. (a) Normalized values of M-PC1 (red) and precipitation index (blue). Monthly values are 
shown for all austral summer months from December 2010 to February 2017 (p < 0.001). (b) Correlation between precipitation index (mean precipitation 
within blue outline) and district precipitation (blue-red filled circles). Note similarities to the spatiotemporal pattern of M-EOF1 in Figure 4a. (c) Correlations 
between mean monthly precipitation within central Mozambique precipitation index box (blue box, same as in b) and SSTs (blue-red fill) from 2010 to 2017 
after application of a 13-month low-pass filter. Stippling denotes regions where significance exceeds p < 0.05. Boxes illustrate locations of spatial averaging 
involved in calculating indices for various modes of climate variability (ENSO, IOD, SIOD, and Benguela Niño) as defined in Table S1. ENSO, El Niño-Southern 
Oscillation; IOD, Indian Ocean Dipole; SIOD, Subtropical Indian Ocean Dipole.
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more robust exploration of relationships between Mozambique malaria/precipitation and modes of climate 
variability. Given that climate phenomena such as the ENSO and the IOD oscillate with return periods be-
tween 1 and 10 years, a roughly 40-year analysis period allows for a more robust analysis than is afforded by 
the comparatively short 8-year time period, the latter of which encompasses a limited number of cycles of 
the modes of climate variability under investigation and may be confounded by nonstationarity.

To determine which mode of climate variability underlies the variability represented by the central Mozam-
bique precipitation index, we calculated and mapped the correlation between the precipitation index and 
global SST (Figure 5c). This analysis reveals a statistically significant SST anomaly pattern closely project-
ing onto the canonical fingerprint of La Niña. A high precipitation index value corresponds to a warmer 
(cooler) than average western (eastern) equatorial Pacific Ocean; the central Mozambique precipitation and 
Niño 3.4 climate indices are highly correlated (r = −0.57, p < 0.001). This analysis also reveals potential 
links between central Mozambique precipitation and the SIOD, the IOD, and the Benguela Niño, which are 
further examined through the EOF analysis of precipitation.

The primary mode of austral summer precipitation (P-EOF1) mirrors M-EOF1, with a loading maximum 
centered over the region of the precipitation index (Figure 6). P-PC1 is significantly correlated with the Niño 
3.4 index (r = −0.63, p < 0.001). Taken together, these EOF analyses on malaria and regional precipitation 
suggest a link between ENSO and malaria/precipitation where La Niña (El Niño) events typically lead 
to increased (decreased) precipitation over the southern, subtropical portion of Mozambique. Additional 
modes of interannual climate variability in the Indian Ocean (e.g., the SIOD) are also implicated and re-
quire further examination. The physical mechanisms underlying the linkages suggested by these temporal 
correlations are examined further in the following section.

3.2. Diagnosis of the ENSO Influence on Mozambique Rainfall and Malaria

The connection of El Niño (La Niña) to a drier (wetter) austral summer over southeastern Africa is a known 
teleconnection (e.g., Cane et  al.,  1994; Ropelewski & Halpert,  1987). However, to fill a gap within the 
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Figure 6. Dominant modes of spatiotemporal variability of austral summer precipitation in Mozambique. (a) 
Primary mode of spatiotemporal variability (P-EOF1) of mean austral summer precipitation from 1982 to 2018. This 
mode explains 45.6% of the spatiotemporal variance. (b) Same as (a) but for P-EOF2. This mode explains 17.1% of the 
spatiotemporal variance. Note also the spatial correspondence with malaria EOFs (Figure 4). EOF, empirical orthogonal 
function.

(a) (b)
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literature surrounding the link between ENSO and precipitation—and subsequently, malaria—over sub-
tropical Mozambique, it is necessary to establish the mechanistic links between ENSO and its downstream 
influence on southern Africa. We explain and illustrate our dynamical diagnosis of this mechanism here.

One major source of moisture for subtropical Mozambique in austral summer is the tropical southern Con-
go Basin (Figure 7a). Much of the austral summer rainfall in Mozambique, therefore, is driven by cyclonic 
circulation around a semi-permanent heat low—the Angola Low—that is typically positioned to the west 
of Mozambique around the border of Angola and Namibia (Figure 7b), in addition to onshore flow onto 
southern Mozambique from the subtropical Mascarene High. During an El Niño event, there is a reduction 
in the strength of trade winds in the tropical Atlantic with a corresponding decrease of evaporative heat 
flux and delayed SST warming in the region (Enfield & Mayer, 1997; Karnauskas et al., 2008). The resultant 
Rossby wave train (Figure 7c) leads to an upper-level geopotential height anomaly over southern Africa 
which, in the case of La Niña (El Niño), leads to a deepening (weakening) of the Angola Low at lower levels 
(Figure 7d) on average.

The above-described global-scale response leads to regional-scale changes in the lower-level circulation 
patterns over Mozambique, notably an increase in northwesterly flow over central Mozambique. These 
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Figure 7. Climate diagnosis of ENSO influence on Southern Africa during austral summer. (a) Mean austral summer specific humidity at 850 hPa in g/
kg (green fill). Contours every 2 g/kg beginning at 3 g/kg. (b) 850 hPa geopotential height and winds in austral summer during neutral ENSO conditions. 
Geopotential height in m (red-blue fill) with contours every 1.65 m. Wind vectors (white arrows) in m/s. (c) Correlations between austral summer Niño 3.4 
Index and 300 hPa geopotential height minus zonal mean (red-blue fill). Contours every 0.1. Niño 3.4 Index box plotted over the equatorial Pacific (black). (d) 
Same as (b) but for a composite of La Niña-El Niño events. 31 evenly spaced contour intervals. Wind vectors (white arrows) in m/s. (e) Mean austral summer 
vertically integrated moisture flux divergence for composite of La Niña-El Niño events. Moisture flux divergence (blue-red fill) is in kg/m2 s with 13 evenly 
spaced contour intervals. Stippled values exceed two-sigma significance. ENSO, El Niño-Southern Oscillation.
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mean circulation changes caused by the intensification (weakening) of the Angola Low that occurs during 
La Niña (El Niño) events broadly results in an increase (decrease) in vertically integrated moisture flux 
convergence and over southern Africa (Figure 7e) and, in particular, over central Mozambique (Figure 8a). 
This increase in vertically integrated moisture flux convergence directly leads to an increase in precipitation 
(Figure 8b) and ultimately produces the patterns of malaria and precipitation illustrated in M-EOF1 and 
P-EOF1 in Figures 4 and 6, respectively.

3.3. Role of Other Modes of Climate Variability

As described in Section 3.1, M-PC2 is highly correlated (r = −0.80, p < 0.001) with the IOD. However, the 
canonical influences of the IOD over southern and eastern Africa precipitation do not project onto the 
precipitation pattern embodied by M-EOF2. A composite of CHIRPS precipitation data on an IOD index 
reveals a universal increase in precipitation across Mozambique for positive IOD (Figure S3). This coincides 
with neither the pattern (north-south dipole) nor the direction of the primary loading maximum revealed 
by the secondary EOF pattern in malaria. In addition, P-PC2 over Mozambique from year-to-year is not 
significantly correlated with the IOD.

Despite the statistically significant correlation between the second EOF of malaria and the IOD, broadening 
the analysis period using CHIRPS precipitation data reveals the IOD to be an insignificant driver of precip-
itation in Mozambique over the 1982–2019 time period. Conversely, the SIOD is significantly anticorrelated 
(r = −0.35, p < 0.05) with P-PC2 (Figure 6b). Given the relatively recent discovery of the SIOD and relative 
dearth of literature documenting its regional impacts, we thus explore the physical links between the SIOD 
and Mozambican precipitation. The field correlation between P-PC2 and global SST anomalies reveals a 
couplet of anomalously warm and cool SST near the conventional SIOD index boxes (Figure 9a). Though 
the SIOD index has been conventionally defined (Behera & Yamagata, 2001), there is ongoing debate about 
the geographic aspect of this metric (Zhang et al., 2019). In an effort to enhance the SIOD index for the 
present study, we slightly redefine the SIOD index boxes over the regions of highest correlation between SST 
anomalies and the second principal component of precipitation (Table S1 and Figure 9). The former and 
modified SIOD indices are significantly correlated (r = 0.68, p < 0.001), despite the adjustment to align with 
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Figure 8. Composite differences in moisture flux divergence and precipitation between La Niña and El Niño in austral 
summer. (a) Moisture flux divergence in kg/m2 s (blue-red fill) with contours every 10−6 kg/m2 s. (b) Precipitation in 
mm/month (red-blue fill) with contours every 50 mm/month.

Mean DJF Vertically Integrated 
Moisture Flux Divergence Mean DJF Precipitation
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the relevant SIOD centers of action. In addition to refocusing on the most appropriate areas of the Indian 
Ocean, evidenced by the increased strength of connection between the SIOD index and P-PC2 (correlation 
improved from r = −0.35 (p < 0.05) to r = −0.46 (p < 0.005)), altering the SIOD index had the additional 
benefit of reducing the confounding influence of ENSO on the SIOD (strength of correlation decreased 
from r = −0.35 (p < 0.05) to r = −0.19 [ns]), as shown in Figures 9b and 9c.

There is a strong meridional dipole of spatiotemporal precipitation variability in Mozambique (Figure 10). 
After calculating the modified SIOD index, field composites of 850 hPa geopotential height and winds (Fig-
ure 11a) demonstrate the influence of the SIOD, including mechanistic evidence of the aforementioned 
meridional dipole of precipitation (Figure 10). As is demonstrated in the composited 850 hPa geopotential 
height a negative SIOD leads to a weakening of the Mascarene High and the adjacent low-pressure system 
on average. This produces a low-level circulation pattern where southerly winds enhance onshore flow and 
lead to moisture flux convergence over the northern part of Mozambique (Figure 11b). This same circula-
tion anomaly leads to moisture flux divergence over the southern part of the country. In contrast, a positive 
SIOD deepens the Mascarene High and intensifies the adjacent low-pressure system. These changes direct 
easterly winds toward Madagascar and produce divergent winds and, subsequently, moisture flux diver-
gence over the northern part of the country. This also leads to enhanced moisture advection from the conti-
nent and moisture flux convergence over the southern half of Mozambique. These patterns ultimately drive 
the precipitation response shown in the composite-mean field (Figure 10c), which mirrors P-EOF2 both in 
austral summer (Figure 10a) and annually (Figure 10b). After ENSO, SIOD is an important secondary factor 
governing precipitation and, therefore, malaria variability, in Mozambique.
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Figure 9. Correlations between global SST fields and various indices. (a) Correlations between austral summer principal component two of long-term 
precipitation and SSTs (blue-red fill). Conventional and modified SIOD index boxes are outlined in dashed white and solid black, respectively. (b) Same as (a) 
but for conventional SIOD index and SSTs. (c) Same as (a) but for modified SIOD index and SSTs. SST, sea surface temperatures; SIOD, Subtropical Indian 
Ocean Dipole.
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4. Summary and Conclusions
This study examined the spatiotemporal variability of malaria and surface climate in Mozambique, based 
primarily on patterns revealed by two separate EOF analyses—one of malaria incidence for 142 districts in 
Mozambique, and one of relatively high-resolution precipitation data. Though the primary concern of the 
analysis is the interannual variability of malaria in Mozambique, utilizing precipitation data as a climate 
proxy expanded the time period of record and allowed for a more robust comparison with known modes of 
climate variability.

The leading mode of interannual variability, first revealed through EOF analyses of both malaria and of 
precipitation, exhibits a primary center of action in the southern part of Mozambique and explains 64% 
and 46% of the variability in M-EOF1 and P-EOF1, respectively. This loading pattern was statistically and 
mechanistically linked to ENSO. Anomalous SSTs in the equatorial Pacific associated with a La Niña event 
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Figure 10. Spatiotemporal patterns in Mozambique precipitation: secondary EOFs and composite of SIOD. (a) Secondary EOF of austral summer precipitation 
(P-EOF2) in Mozambique (blue-red fill). This mode explains 20.1% of the spatiotemporal variance. (b) Same as (a) but for annual precipitation. This mode 
explains 17.8% of the spatiotemporal variance. (c) Negative minus positive SIOD composite of austral summer Mozambique precipitation in mm/month (red-
blue fill). SIOD, Subtropical Indian Ocean Dipole; EOF, empirical orthogonal function.
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(Negative Positive SIOD)(a) (c)(b)

Figure 11. 850 hPa composites over SIOD. (a) Negative minus positive SIOD composite of austral summer 850-hPa geopotential height in m (blue-red fill) and 
wind vectors. (b) Negative minus positive SIOD composite of vertically integrated moisture flux divergence in kg/m2 s (blue-red fill) and wind vectors. SIOD, 
Subtropical Indian Ocean Dipole.
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generate atmospheric Rossby and Kelvin waves that produce a cascading global atmospheric response. On 
average, this forcing leads to a deepening of the Angola Low over southwestern Africa and an intensifi-
cation of the cyclonic flow in the region. This circulation pattern leads to anomalous advection of moist, 
tropical air from the Congo Basin toward Mozambique, moisture flux convergence focused over central Mo-
zambique and, ultimately, an increase in precipitation and malaria in the subtropical part of the country. An 
El Niño event reverses the aforementioned sequence attributable to La Niña events and leads to a decrease 
in precipitation and malaria in the subtropical part of the country.

Though ENSO is the dominant factor in Mozambique rainfall and the primary driver of malaria in the 
southern part of the country, we have demonstrated that the SIOD is also an important mode of climate 
variability over the region. The positive phase of the SIOD generally leads to increased moisture flux conver-
gence and precipitation over the southern part of the country and moisture flux divergence over the north-
ern part of the country. Meanwhile, the negative phase of the SIOD drives onshore flow, increased moisture 
flux convergence, and enhanced precipitation over the northern part of Mozambique, particularly along the 
south-facing coast. The SIOD has been demonstrated to be an important, secondary driver of precipitation.

Though the malaria data set used is of high spatial and temporal resolution, the time span of the data is 
not long enough to confidently establish links with modes of interannual climate variability using solely 
the malaria record. Given the return period for the relevant climate oscillations investigated—roughly 1–10 
years—the length of the time span of the malaria data set provides limited opportunities to perform a robust 
analysis of climatic influences on malaria incidence. While the strong links between precipitation and ma-
laria do allow for longer-term precipitation data sets to be used as proxies for malaria, this is an assumption 
with uncertainty. For example, though increased precipitation typically leads to an increase in standing 
water and mosquito breeding sites, recurring high precipitation events can wash away standing water from 
previous precipitation events. We are confident in the spatial patterns identified, but the available time peri-
od of malaria data is limiting. In addition to data limitations, there is the potential for extrapolation difficul-
ties caused by changes in the strength of modes of climate variability (e.g., Cai et al., 2015, 2019). Notably, 
there is evidence of a shift in the dominant mode of climate variability in the region from SIOD to ENSO 
(Richard et al., 2000; Zinke et al., 2004). Finally, we cannot dismiss the possibility that socioeconomic fac-
tors (e.g., spatial differences in testing capacity) and intervention coverage and effectiveness may contribute 
to the spatiotemporal variability of malaria identified in this work, but all analysis indicates these impacts 
on interannual spatiotemporal variability of malaria are dwarfed by the strength of the previously dissected 
connections between the spatiotemporal patterns of malaria and modes of climate variability.

The overarching goal of this analysis is to inform a malaria early warning system of benefit to public health 
officials in Mozambique. By producing what we believe to be a novel application and analysis of an empir-
ical orthogonal function on disease data, we have demonstrated that there may be additional opportunities 
to inform public health officials by tying broad spatial patterns of malaria rates to quasipredictable modes 
of climate variability, compared to previously explored models built upon weekly malaria case data and 
weather predictions. Further research will need to be done to determine if existing intraseasonal and sea-
sonal-to-subseasonal forecasting capabilities allow these connections to be appropriately utilized in a public 
health setting. In addition, the present malaria data set can be examined on shorter time scales to examine 
the impacts of temperature and humidity on the spatial patterns observed in the present analysis. Finally, 
the methodology utilized in the present study may be applied more broadly to other disease data—both to 
other locations, as well as other species of disease. The use of this methodology in this capacity may reveal 
both spatial patterns of disease outbreaks and interannual prevalence of disease.

Data Availability Statement
The NOAA Optimal Interpolation version 2 (OIv2) SST and Global Precipitation Climatology Project 
(GPCP) precipitation data sets are publicly available and can be accessed at https://psl.noaa.gov/data/grid-
ded/data.noaa.oisst.v2.highres.html and https://psl.noaa.gov/data/gridded/data.gpcp.html, respectively. 
The ECMWF ERA5 reanalysis data are publicly available at https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5. Climate Hazards Center CHIRPS data are publicly available at https://www.chc.
ucsb.edu/data. All malaria data presented in this study are owned by the Government of Mozambique; they 
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are available under specific circumstances through a formal request to the Director of the National Malaria 
Program, Dr Baltazar Candrinho, at candrinhobaltazar@gmail.com.
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